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Deviation from Maxwell distribution in granular gases with constant restitution coefficient

Nikolai V. Brilliantov1,2 and Thorsten Po¨schel1,*
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2Physics Department, Moscow State University, Moscow 119899, Russia
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We analyze the velocity distribution function of force-free granular gases in the regime of homogeneous
cooling when deviations from the Maxwellian distribution may be accounted only by the leading term in the
Sonine polynomial expansion, quantified by the second coefficienta2 . We go beyond the linear approximation
for a2 and find three different values~three roots! for this coefficient which correspond to a scaling solution of
the Boltzmann equation. The stability analysis performed showed, however, that among these three roots only
one corresponds to a stable scaling solution. This is very close toa2, obtained in previous studies in a linear
with respect toa2 approximation.

PACS number~s!: 81.05.Rm, 36.40.Sx, 51.20.1d, 66.30.Hs
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Granular gases, i.e., rarefied systems composed of in
tically colliding particles have been of particular interest d
ing the last decade~e.g., Refs.@1–4#!. Compared to gases o
elastically colliding particles, the dissipation of energy at
elastic collisions leads to some novel phenomena in th
systems such as clustering~e.g., Ref.@1#!, formation of vor-
tex patterns~e.g., Ref.@2#!, etc. Before clustering starts, th
granular gas being initially homogeneous, keeps for so
time its homogeneity, although its temperature permane
decreases. This regime is called the homogeneous coo
regime~HC!.

In the present study we address the properties of the
locity distribution of granular particles in the regime of HC
such as the deviation from the Maxwellian distribution a
the stability of the distribution function. We assume that t
restitution coefficiente does not depend on the impact velo
ity, i.e., thate5const. The properties of the velocity distr
bution for the system with impact-velocity dependent coe
cient of restitution ~e.g., Ref. @5#! will be addressed
elsewhere@6#.

It is well known that granular gases in the HC regime
not reveal Maxwellian distribution~e.g., Refs.@3,4,7,8#!. The
high-velocity tail is overpopulated@3,8#, while the main part
of the distribution is described by the sum of the Maxwelli
and correction to it, written in terms of the Sonine polyn
mial expansion~e.g., Refs.@3,4,7#!. Usually only the leading,
second term, in this expansion is taken into account@3,4,7#,
moreover in previous studies@3,4# only linear analysis with
respect to the coefficienta2, which refers to this second term
has been performed. Finding thata2, obtained within the
linear approximation, is small, the authors of Refs.@4,3# con-
cludea posteriori that the linear approximation is valid.

In our approach we also assume that one can restrict
self to the leading term in the Sonine polynomial expansi
However, we go beyond the linear approximation with
spect to the coefficienta2 and perform complete analys
within this level of the system description. We found thr
different values ofa2 which correspond to the scaling solu
tion of the Boltzmann equation. The stability analysis for t
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velocity distribution function shows, however, that only o
value of a2 corresponds to a physically acceptable sta
scaling solution. The stable solution is close to the res
previously obtained within the linear analysis@3#.

To introduce notations and specify the problem we brie
sketch the derivation of the coefficienta2 @3,4#. We intro-
duce the~time-dependent! temperatureT(t), and the thermal
velocity v0(t), which are related to the velocity distributio
function f (v,t) for 3D systems as

3

2
nT~ t !5E dv

v2

2
f ~v,t !5

3

2
nv0

2~ t !. ~1!

Heren is the number density and the particles are assume
be of unit mass (m51). The inelasticity of collisions is
characterized by the coefficient of normal restitutione,
which relates the after-collisional velocitiesv1* , v2* to the
precollisional ones,v1 , v2 as

v1/2* 5v1/27
1

2
~11e!~v12•e!e, ~2!

wherev125v12v2 is the relative velocity, the unit vectore
5r12/ur12u gives the direction of the vectorr125r12r2 at
the instant of the collision. The time-evolution of the velo
ity distribution function is subjected to the Ensko
Boltzmann equation, which for the force-free case reads@3,9#

]

]t
f ~v,t !5g2~s!s2E dv2E deQ~2v12•e!uv12•eu

3H 1

e2
f ~v1** ,t ! f ~v2** ,t !2 f ~v1 ,t ! f ~v2 ,t !J ,

~3!

where s is the diameter of particles,g2(s)5(22h)/2(1
2h)3 (h5 1

6 pns3 is the packing fraction! denotes the con-
tact value of the two-particle correlation function@10#, which
accounts for the increasing collision frequency due to
excluded volume effects;Q(x) is the Heaviside function.
The velocitiesv1** and v2** refer to the pre-collisional ve-
2809 ©2000 The American Physical Society
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locities of the so-called inverse collision, which results w
v1 andv2 as the after-collisional velocities. The factor 1/e2 in
the gain term appears respectively from the Jacobian of
transformationdv1** dv2** →dv1dv2 and from the relation
between the lengths of the collisional cylinderseuv12** •eudt
5uv12•eudt @3,9#.

Assuming that the velocity distribution function is of
scaling form

f ~v,t !5
n

v0
3~ t !

f̃ ~c! ~4!

one can show that the scaling function satisfies thetime-
independentequation@3#

m2

3 S 31c1

]

]c1
D f̃ ~c!5 Ĩ ~ f̃ , f̃ ! ~5!

with the dimensionless collision integral

Ĩ ~ f̃ , f̃ !5E dc2E deQ~2c12•e!uc12•eu$e22 f̃ ~c1** ! f̃ ~c2** !

2 f̃ ~c1! f̃ ~c2!% ~6!

and with its moments@3#

mp[2E dc1c1
pĨ ~ f̃ , f̃ !, ~7!

while the time-evolution of temperature reads

dT/dt52~2/3!BTm2 , ~8!

whereB5B(t)[v0(t)g2(s)s2n.
To proceed we use the Sonine polynomial expansion

the velocity distribution function@3,4#

f̃ ~c!5f~c!H 11 (
p51

`

apSp~c2!J , ~9!

wheref(c)[p2d/2 exp(2c2) is the Maxwellian distribution
and the first few Sonine polynomials readS0(x)51, S1(x)
52x21 3

2 , S2(x)5x2/225x/21 15
8 , etc. Multiplying both

sides of Eq.~5! with c1
p and integrating by parts overdc1, we

obtain @3#

m2

3
p^cp&5mp , ~10!

where we define

^cp&[E cpf̃ ~c,t !dc. ~11!

The odd momentŝc2n11& are zero, while the even one
^c2n&, may be expressed in terms ofak with 0<k<n. Cal-
culations show that̂c2&5 3

2 , implying a150, according to
the definition of the temperature~1! ~e.g., Ref.@3#!, and that
^c4&5 15

4 (11a2).
Now we assume, that the dissipation is not large, so

the deviation from the Maxwellian distribution may be acc
e

r

at
-

rately described only by the second term in the expansion~9!
with all high-order terms withp.2 discarded. Then Eq.~10!
is an equation for the coefficienta2 . Using the above results
for ^c2& and^c4& it is easy to show that Eq.~10! converts for
p52 into identity, while forp54 it reads

5m2~11a2!2m450. ~12!

The coefficientsmp may be expressed in terms ofa2 due to
the definition ~7! and the assumption f̃ 5f(c)@1
1a2S2(c2)#. Using the properties of the collision integra
one obtains formp @3#

mp52
1

2E dc1E dc2E deQ~2c12•e!uc12•euf~c1!f~c2!$1

1a2@S2~c1
2!1S2~c2

2!#1a2
2S2~c1

2!S2~c2
2!%D~c1

p1c2
p!,

where Dc(ci)[@c(ci* )2c(ci)# denotes change of som
function c(ci) in a direct collision. Calculations, similar to
that, described in Ref.@3#, yield ~details are given in Ref.
@6#!:

m25A2p~12e2!S 11
3

16
a21

9

1024
a2

2D , ~13!

m454A2p$T11a2T21a2
2T3%, ~14!

with

T15
1

4
~12e2!S 9

2
1e2D , ~15!

T25
3

128
~12e2!~69110e2!1

1

2
~11e!,

T35
1

64
~11e!1

1

8192
~12e2!~9230e2!.

The coefficientsm2 andm4 were provided in Ref.@3# up to
terms of the order ofO(a2). One obtains the coefficienta2
in the Sonine polynomial expansion in this approximation
substituting Eqs.~13!, ~14! into Eq. ~12! and discarding in
Eqs.~13!, ~14! all terms of the order ofO(a2

2):

a2
NE5

16~12e!~122e2!

81217e130e2~12e!
. ~16!

Calculations including the next order termsO(a2
2) in the

coefficientsm2 and m4 show that Eq.~12! is a cubic equa-
tion, which for physical values ofe, 0<e<1, has three dif-
ferent real roots, as it shown in Fig. 1.

Although the cubic equation may be generally solved,
resultant expressions for the roots are too cumbersome t
written explicitly. However, one of the roots~the middle
one! is rather small and close to that given by Eq.~16!,
obtained within the linear approximation. This suggests
perturbative solution of the cubic equation near this root:
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a25a2
NEF12

1005~12e2!24096T3

6080~12e2!24096T2

a2
NE1•••G , ~17!

where we do not write explicitly terms of the orde
O(@a2

NE#3) and higher. In Fig. 2 the dependence ofa2
NE and

of the corresponding improved valuea2 are shown as a func
tion of the restitution coefficiente. As one can see from Fig
2 the maximal deviation between these is less than 10%
small e and decreases ase tends to 1.

The other two roots, shown on Fig. 3 are of the order o
or 10, i.e., are not small. Physically, this means that o
cannot cut the Sonine polynomial expansion in this cas
the second term and next order terms are not negligible. T
ing into account the next order terms, i.e., releasing the
sumption thatap.0 for p.2, breaks down the above anal
sis, since the coefficientsm2 , m4 occur to be dependent no
only ona2, but ona3 , a4 , . . . as well. Thus the occurrenc
of several roots for thea2, found within the above approach
which satisfy the conditions required by the scaling ans
~4! does not imply the existence of several different scal
solutions. Nevertheless such possibility may not be co
pletely excluded. If one assumes that few scaling distri
tions of the velocity may realize, depending on the init
conditions at which the HC state has been prepared, a na
question arises: Whether the particular scaling solution
stable with respect to small perturbations, and what is
domain of attraction of this particular scaling solution
some parametric space.

FIG. 1. The left hand side of Eq.~12! over a2 for e50.8. Ob-
viously Eq.~12! has three real solutions.

FIG. 2. The second Sonine coefficienta2 as a function of the
coefficient of restitutione ~full line!. The dashed line showsa2

NE in
the first order approximation by van Noije and Ernst@3# according
to Eq. ~16!. The approximation~17! is shown by circles.
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Certainly, the stability problem is very complicated to b
solved in general. Therefore, we restrict ourselves to the
bility analysis of the scaling distribution~4! where the scal-
ing function f̃ (c) has nonzero value of the coefficienta2,
while the other coefficientsap with p.2 are negligibly
small. ~For this scaling solution our above results for t
coefficientsm2 , m4 are valid!. Moreover, we assume, tha
small perturbations of the~vanishingly small! coefficientsap
with p.2 do not influence the stability of the distribution
and analyze the stability only with respect to variation of t
coefficienta2 .

To analyze the stability of the velocity distribution w
write it in a more general form

f ~v,t !5
n

v0
3~ t !

f̃ ~c,t ! ~18!

which leads, as it easy to show, to the following generali
tion of Eq. ~5! @6#:

m2

3 S 31c1

]

]c1
D f̃ ~c,t !1B21

]

]t
f̃ ~c,t !5 Ĩ ~ f̃ , f̃ ! ~19!

with the collisional integral and coefficientsmp being now
time dependent. The quantities^cp& also depend now on
time, while temperature evolves still according to Eq.~8!.

Using f̃ 5f(c)@11a2(t)S2(c2)# and performing essen
tially the same manipulations which led before to Eq.~12!,
we find for the coefficienta2(t):

ȧ22~4/3!Bm2~11a2!1~4/15!Bm450 ~20!

with m2 , m4 still given by Eqs.~13!, ~14!, but with the time-
dependent coefficienta2(t). Writing the above valueB(t) as

B~ t !5~8p!21/2tc~0!21u~ t !1/2, ~21!

tc~0!21[4p1/2g2~s!s2nT0
1/2, ~22!

wheretc(0) is related to the initial mean-collision time a
the initial temperatureT0, andu(t)[T(t)/T0 is the reduced
temperature, we recast Eq.~20! into the form

da2

d t̂
5

A2/p

15
u1/2F~a2!, ~23!

FIG. 3. The other two solutions for second Sonine coefficienta2

of Eq. ~12! over the coefficient of restitutione.
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where t̂ is the reduced time, measured in units oftc(0), and
where we define a function

F~a2![5m2~11a2!2m4 . ~24!

The form of the functionF(a2) for some particular value o
e is shown on Fig. 1. This form ofF(a2) persists for all
physical values of the restitution coefficient, 0<e<1. There
are three different roots,F(a2

( i ))50, i 51,2,3, which make
da2 /dt vanish yielding the scaling form for the solution o
the Enskog-Boltzmann equation. The stability of the scal
solution, corresponding toa2

( i ) requires for the derivative
dF/da2, taken ata2

( i ) to be negative, since only in this case
small deviationa22a2

( i ) from a2
( i ) , corresponding to a scal

ing solution will decay with time. As one can see from F
1 only the middle root, which corresponds to small values
a2, and is close toa2

NE , predicted by linear theory@3#, has
negativedF/da2, and thus is stable. We also observed t
for any 0<e<1 the pointa250 belongs to the attractive
interval of this stable root. Naturally, this means that an i
tial Maxwellian distribution will relax to the non-Maxwellian
with a2'a2

NE .
Note that relaxation of any~small! perturbation to this

value ofa2 occurs, as it follows from Eq.~23!, on the colli-
sion time scale, i.e., practically ‘‘immediately’’ on the tim
scale which describes the evolution of the temperatu
v

a

g

f

t

-

e.

Therefore we conclude, that the scaling solution of t
Enskog-Boltzmann equation witha2 corresponding to the
middle root of the functionF(a2), given with a high accu-
racy by Eqs.~17!,~16!, and with negligibly small other coef
ficientsa3 ,a4 , . . . , of theSonine polynomial expansion is
stable one with respect to~relatively! small perturbations.

In conclusion, we analyzed the velocity distribution fun
tion of a granular gas with constant restitution coefficient
the regime of homogeneous cooling. We assume that
deviations from the Maxwellian distribution may be d
scribed using only the leading term in the Sonine polynom
expansion, with all other high-order terms discarded. In t
approach the deviations from the Maxwellian distribution a
completely characterized by the magnitude of the coeffici
a2 of the leading term. We go beyond previous linear the
ries and perform a complete analysis~on the level of the
description chosen!, without discarding any nonlinear with
respect toa2 terms.

Performing the stability analysis of the scaling solution
the Enskog-Boltzmann equation we observe that only
value of a2, obtained within our nonlinear analysis corr
sponds to a stable scaling solution. We also report cor
tions for this value ofa2 with respect to the previous resu
of the linear theory. These corrections are small~less than
10%! for all values of the restitution coefficiente and van-
ishes ase tends to unity in the elastic limit.
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