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Deviation from Maxwell distribution in granular gases with constant restitution coefficient
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We analyze the velocity distribution function of force-free granular gases in the regime of homogeneous
cooling when deviations from the Maxwellian distribution may be accounted only by the leading term in the
Sonine polynomial expansion, quantified by the second coeffiaientVe go beyond the linear approximation
for a, and find three different valudthree roots for this coefficient which correspond to a scaling solution of
the Boltzmann equation. The stability analysis performed showed, however, that among these three roots only
one corresponds to a stable scaling solution. This is very closg, tobtained in previous studies in a linear
with respect toa, approximation.

PACS numbgs): 81.05.Rm, 36.40.Sx, 51.26d, 66.30.Hs

Granular gases, i.e., rarefied systems composed of inelagelocity distribution function shows, however, that only one
tically colliding particles have been of particular interest dur-value of a, corresponds to a physically acceptable stable
ing the last decadée.g., Refs[1—4]). Compared to gases of scaling solution. The stable solution is close to the result
elastically colliding particles, the dissipation of energy at in-previously obtained within the linear analy$8.
elastic collisions leads to some novel phenomena in these To introduce notations and specify the problem we briefly
systems such as clusterifg.g., Ref[1]), formation of vor-  sketch the derivation of the coefficieat [3,4]. We intro-
tex patternge.g., Ref[2]), etc. Before clustering starts, the duce the(time-dependentemperaturél (t), and the thermal
granular gas being initially homogeneous, keeps for some&elocity vq(t), which are related to the velocity distribution
time its homogeneity, although its temperature permanentljunction f(v,t) for 3D systems as
decreases. This regime is called the homogeneous cooling ) 3
regime (HC). v

In the present study we address the properties of the ve- EnT(t):J dv > f(v.t)= Envg(t)' (1)
locity distribution of granular particles in the regime of HC,
such as the deviation from the Maxwellian distribution andHeren is the number density and the particles are assumed to
the stability of the distribution function. We assume that thebe of unit mass fi=1). The inelasticity of collisions is
restitution coefficient does not depend on the impact veloc- characterized by the coefficient of normal restitutian
ity, i.e., thate=const. The properties of the velocity distri- which relates the after-collisional velocitia§ , v5 to the
bution for the system with impact-velocity dependent coeffi-precollisional onesy;, v, as
cient of restitution (e.g., Ref. [5]) will be addressed
elsewherd6]. . 1

It is well known that granular gases in the HC regime do Vip=Vizr5 (14 €) (Vi e)e, 2
not reveal Maxwellian distributiofe.g., Refs[3,4,7,9). The
high-velocity tail is overpopulatef8,8], while the main part  \herev,,=v, v, is the relative velocity, the unit vectar
of the distribution is described by the sum of the Maxwellian=r_./|r .| gives the direction of the vectar,=r,—r, at
and correction to it, written in terms of the Sonine polyno-the instant of the collision. The time-evolution of the veloc-
mial expansiorie.g., Refs[3,4,7). Usually only the leading, ity distribution function is subjected to the Enskog-

second term, in this expansion is taken into acc¢8m,7,  Boltzmann equation, which for the force-free case réa
moreover in previous studig8,4] only linear analysis with

respect to the coefficiemt,, which refers to this second term d )

has been performed. Finding thag, obtained within the — Z f(V.t)=0a(0)o dezf de® (— Vi, €)|vio

linear approximation, is small, the authors of R¢#s3] con-

cludea posteriorithat the linear approximation is valid. 1

In our approach we also assume that one can restrict one- Xl—zf(v’{* DTV ) —f(vy, ) f(vo,t) ¢,

self to the leading term in the Sonine polynomial expansion. €

However, we go beyond the linear approximation with re- 3

spect to the coefficiend, and perform complete analysis

within this level of the system description. We found threewhere o is the diameter of particlegy,(o)=(2— 7)/2(1

different values of, which correspond to the scaling solu- — )% (»=3%mno?® is the packing fractiondenotes the con-

tion of the Boltzmann equation. The stability analysis for thetact value of the two-particle correlation functifit0], which
accounts for the increasing collision frequency due to the
excluded volume effects® (x) is the Heaviside function.

*URL: http://summa.physik.hu-berlin.dethorsten/ The velocitiesvi* andv3* refer to the pre-collisional ve-
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locities of the so-called inverse collision, which results with rately described only by the second term in the expan@pn
v; andv, as the after-collisional velocities. The factoedin  with all high-order terms witlp> 2 discarded. Then E¢10)
the gain term appears respectively from the Jacobian of ths an equation for the coefficient . Using the above results
transformationdvi* dvi* —dv,dv, and from the relation for (c?) and(c?) it is easy to show that E¢10) converts for
between the lengths of the collisional cylindeds} -e|dt ~ p=2 into identity, while forp=4 it reads
= |V12' e|dt [3,9]

Assuming that the velocity distribution function is of a Sua(l+az)— ua=0. (12
scaling form

The coefficientsu, may be expressed in terms &f due to

~ the definition (7) and the assumptionf=¢(c)[1

vg t)f(c) (4) +a,S,(c?)]. Using the properties of the collision integral
one obtains fo, [3]

f(v,t)=

one can show that the scaling function satisfies tihee-

independenequation[3] fp=— Ef dle dCzJ' de® (- Cypr €)|Cro- €l B(Cy) b(Cp){1
M2 ~ ~ =
3 3+C1(9C1)f<°>:'<f’f> ® +a[Sp(C}) + Sy(65) 1 +a3Sy(c) S, )} A (e + ),

with the dimensionless collision integral where A g(c)=[#(c")—(c)] denotes change of some

function ¢(c;) in a direct collision. Calculations, similar to
T(F ~f)=f dCZJ de0 (—cyp©)|cyp el e 2 (e VT () that, described in Ref.3], yield (details are given in Ref.
' [6]):

~T(epf(c)} (6) 3 9
=\2m(1- € +—a 13
and with its moment§3] Ha= V2l " 16%2 " 1024%2 13
~ o~ _ [ 2
MpE_f dclcﬁ(f,f), (7) /.L4—4 27T{T1+a2T2+a2T3}, (14)
. . . with
while the time-evolution of temperature reads
_ 1 9
dT/dt=—(2/3)BTpu,, 8 lez(l—ez) §+62), (19

whereB=B(t)=v(t)g,(c)o?n.
To proceed we use the Sonine polynomial expansion for

the velocity distribution functiof3,4] T,= 128(1— €2)(69+ 10€?) + = (1+ €),
fo= ¢(c)[ 1+ 2 apSp(cz)J , ) 1 1 , ,
=1 Ta=gz(1+ )+ gigo(1—€)(9-3067).

where ¢(c)= 7% exp(—c?) is the Maxwellian distribution

and the first few Sonine polynomials re&g(x)=1, S;(x) The coefficientsu, and u, were provided in Ref[3] up to

=—x°+32, Sy(x)=x%2—5x/2+%, etc. Multiplying both terms of the order o(a,). One obtains the coefficiert,

sides of Eq(5) with cf and integrating by parts ovelc,;, we N the Sonine polynomial expansion in this approximation by

obtain[3] substituting Eqs(13), (14) into Eqg. (12) and discarding in
Egs.(13), (14) all terms of the order oO(a’zl):

M2

—n(cP\= , 10
ahE= 5 ) (16)
where we define 81— 17e+30e“(1—€)

o\ 5% Calculations including the next order terrﬁk{ag) in the
(cP)= | cPf(c,tyde. (1D coefficientsu, and u, show that Eq(12) is a cubic equa-
tion, which for physical values of, O<e<1, has three dif-
The odd momentgc®"*1) are zero, while the even ones, ferent real roots, as it shown in Fig. 1.
(c®), may be expressed in terms af with 0<k<n. Cal- Although the cubic equation may be generally solved, the
culations show thafc?)=3, implying a;=0, according to  resultant expressions for the roots are too cumbersome to be
the definition of the temperatufg) (e.g., Ref[3]), and that  written explicitly. However, one of the root&he middle
(cH=L(1+ay). one is rather small and close to that given by H@d6),
Now we assume, that the dissipation is not large, so thabbtained within the linear approximation. This suggests the
the deviation from the Maxwellian distribution may be accu- perturbative solution of the cubic equation near this root:
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FIG. 1. The left hand side of Eq412) overa, for e=0.8. Ob- FIG. 3. The other two solutions for second Sonine coefficignt
viously Eq.(12) has three real solutions. of Eq. (12) over the coefficient of restitutios.

Certainly, the stability problem is very complicated to be
(17) solved in general. Therefore, we restrict ourselves to the sta-
bility analysis of the scaling distributio®) where the scal-

) o ing functionf(c) has nonzero value of the coefficieas,

where we do not write explicitly terms of the order whjle the other coefficients, with p>2 are negligibly

NE73 ; ; . . p
O([az7]") and higher. In Fig. 2 the dependenceadf and  small. (For this scaling solution our above results for the
of the corresponding improved valag are shown as a func-  coefficientsu,, w4 are valid. Moreover, we assume, that
tion of the _restltutlo_n (_;0eff|C|en§. As one c_an see from Fig. small perturbations of the/anishingw Smam Coefﬁcientsap
2 the maximal deviation between these is less than 10% &ith p>2 do not influence the stability of the distribution,
small e and decreases astends to 1. and analyze the stability only with respect to variation of the

The other two roots, shown on Fig. 3 are of the order of Icpefficienta, .

or 10, i.e., are not small. Physically, this means that one To analyze the stability of the velocity distribution we
cannot cut the Sonine polynomial expansion in this case gfrite it in a more general form
the second term and next order terms are not negligible. Tak-

1005 1— €?)— 40967
1- 41-¢) SalEL .

a :a .. s
22 6080 1— €2)— 4096T, °

ing into account the next order terms, i.e., releasing the as- n _

sumption that,=0 for p>2, breaks down the above analy- f(v,t)=——f(ct) (18
sis, since the coefficienig,, u, occur to be dependent not vo()

only ona,, but onas, a4, ... as well. Thus the occurrence

of several roots for tha,, found within the above approach, V.Vh'Ch leads, as '_t easy 1o show, to the following generaliza-
which satisfy the conditions required by the scaling ansat%'on of Eq. (5) [6]:

(4) does not imply the existence of several different scaling P
solutions. Nevertheless such possibility may not be com- £z
pletely excluded. If one assumes that few scaling distribu- 3

tions of the velocity may realize, depending on the initial . - . - .
conditions at which the HC state has been prepared, a natur%avl'th the collisional integral and coefficienjs, being now

5 @19

J \~ 1 0~
3+Cl(9_01 f(c,t)+B Ef(c,t)z

iti p
qguestion arises: Whether the particular scaling solution i Ime dependent. The quantitigs®) also depend now on

stable with respect to small perturbations, and what is th Ime, yvh|l~e temperature evolvezs still according .to ).

domain of attraction of this particular scaling solution in  Using f=¢(c)[1+ay(t)S;(c%)] and performing essen-

some parametric space. tially the same manipulations which led before to Etp),
we find for the coefficient,(t):

0.20 . a,— (413)Buy(1+ay) + (4/15Bu,=0 (20)
0.15 1 with w,, wg still given by Egs(13), (14), but with the time-

010 | dependent coefficierat,(t). Writing the above valu8(t) as

S

0.05 | B()=(8) 2r,(0) *u(t)*? (22)

7(0) t=473g,(0)o?*nTY?, 22

0.00 e <(0) ’ga(0) 0 (22)

00 02 04 06 08 1.0 where 7,(0) is related to the initial mean-collision time at
coefficient of restitution the initial temperaturd 5, andu(t)=T(t)/T, is the reduced
. o . temperature, we recast E@QO) into the form
FIG. 2. The second Sonine coefficieaf as a function of the
coefficient of restitutiore (full line). The dashed line showaﬁ' in da, \/m

the first order approximation by van Noije and Erf} according = —u”ZF(az), (23
to Eg. (16). The approximatior{17) is shown by circles. dt 15
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Where’f is the reduced time, measured in UnitmO), and Therefore we conclude, that the Scaling solution of the

where we define a function Enskog-Boltzmann equation with, corresponding to the
middle root of the functior(a,), given with a high accu-
F(az)=5ua(1+az)—us. (24 racy by Eqs(17),(16), and with negligibly small other coef-

ficientsas,a,, . . ., of theSonine polynomial expansion is a
stable one with respect foelatively) small perturbations.

In conclusion, we analyzed the velocity distribution func-
tion of a granular gas with constant restitution coefficient in
the regime of homogeneous cooling. We assume that the
; . - deviations from the Maxwellian distribution may be de-
the Enskog-Boltzmann equzail)tlon. The stability of the scalingsqjneq ysing only the leading term in the Sonine polynomial
solution, corresponding ta;’ requires for the derivative  gynansion, with all other high-order terms discarded. In this
dF/da,, taken a&f’ to be negative, since only in this case & approach the deviations from the Maxwellian distribution are
small deviationa,—a$’ from af’, corresponding to a scal- completely characterized by the magnitude of the coefficient
ing solution will decay with time. As one can see from Fig. a, of the leading term. We go beyond previous linear theo-
1 only the middle root, which corresponds to small values ofies and perform a complete analysin the level of the
a,, and is close t@)", predicted by linear theorf3], has  description chosen without discarding any nonlinear with
negativedF/da,, and thus is stable. We also observed thatrespect toa, terms.
for any O<e<1 the pointa,=0 belongs to the attractive Performing the stability analysis of the scaling solution of
interval of this stable root. Naturally, this means that an ini-the Enskog-Boltzmann equation we observe that only one
tial Maxwellian distribution will relax to the non-Maxwellian value of a,, obtained within our nonlinear analysis corre-

The form of the functior-(a,) for some particular value of
€ is shown on Fig. 1. This form oF(a,) persists for all
physical values of the restitution coefficientsé<1. There
are three different roots;(a$’)=0, i=1,2,3, which make
da,/dt vanish yielding the scaling form for the solution of

with azwa'z\‘E. sponds to a stable scaling solution. We also report correc-
Note that relaxation of anysmal) perturbation to this tions for this value ofa, with respect to the previous result
value ofa, occurs, as it follows from Eq23), on the colli- of the linear theory. These corrections are snfl@és than

sion time scale, i.e., practically “immediately” on the time 10%) for all values of the restitution coefficiertand van-
scale which describes the evolution of the temperatureishes ase tends to unity in the elastic limit.
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